作者 | 魏启扬
来源 | 洞见新研社毫末智行有着天生的紧迫感。
很多科技公司一年才举办一次的品牌日活动,毫末智行硬是办成了一个季度一次,活动频次的提高,则意味着组织内部新陈代谢的提速,从研发到落地乃至运营,都要跟上步点节奏。
毫末智行用这样一种方式来鞭策自己在自动驾驶道路上的进取之心。
4月11日结束的第八届HAOMO AI DAY,活动规格再上台阶,吸引了中国汽车芯片联盟联席理事长、中国电动汽车百人会副理事长董扬,同济大学教授、汽车安全技术研究所所长朱西产,清华大学车辆与运载学院教授曹东璞、华为云人工智能领域首席科学家、国际欧亚科学院院士、IEEE/CAAI Fellow田奇等业内大咖参会。
在影响力持续扩大的毫末智行再次更新了自己在技术、产品和生态上的进展,其中城市NOH即将量产上车与毫末DriveGPT 雪湖·海若的发布成最大亮点。
前者是中国首个重感知、不依赖高精地图的城市NOH,将最先落地北京、上海、保定等城市,后者则是全球首个自动驾驶生成式大模型。
NOH量产上车,毫末智行过去就曾做过预告,此次确定了更具体的落地时间,算是兑现了之前“夸下的海口”。
至于雪湖·海若 ,在GPT火热的当下,参与其中的自动驾驶公司也不少,为什么是毫末智行率先发布,成为很多人心中的谜团。01 自动驾驶大考年,毫末智行冲在最前线
毫末智行加快推进NOH的落地进程,很大一部分原因在于智驾产品已经进入到全线爆发的前夜。
来自工信部和高工智能汽车研究院的数据显示,2021年乘用车L2级智驾产品的搭载率是23.5%,全年共交付了476万辆。
到了2022年,乘用车上车的智驾产品升级到L2级以上,搭载率提升到29.4%,全年了交付了585.99万辆。
按照这一趋势预测,到2025年时,乘用车L2级以上智驾产品的搭载率将达到70%。
毫无疑问,正在经历的2023年和还没到来的2025年将十分关键,用毫末智行董事长张凯的话来说,“2023年既是自动驾驶的冲刺之年,也是大考之年”。
张凯判断,智驾产品今年的爆发将主要集中在两个方面。
第一个是城市导航辅助驾驶产品将围绕量产上车发力,主要玩家的城市辅助驾驶产品进入到真实用户覆盖和多城市落地的比拼。
另一个是行泊一体和无人车商业化将成为自动驾驶公司深耕的重点。在乘用车领域,搭载行泊一体功能的智驾产品将迎来前装量产潮。毫末智行作为“渐进派”的代表,坚定认为辅助驾驶是通往自动驾驶的必由之路,因而在过往,一直致力于推动智驾产品上车。
2021年推出HPilot 1.0版本,当年即完成坦克300城市版、魏牌拿铁、魏牌玛奇朵、哈弗神兽5款车型的量产上车,搭载乘用车数量超过数万台。
2022年,毫末智行对HPilot进行了两次大版本更新,HPilot月度搭载增速超过200%,与此毫末城市NOH辅助驾驶系统也完成了量产交付,搭载HPilot 3.0的新摩卡DHT-PHEV魏牌蓝山将在2023年先后上市。
根据毫末智行官方公布的数据,截至毫末HPilot整体已搭载近20款车型。用户辅助驾驶行驶里程突破4000万公里,HPilot 2.0 辅助驾驶日均里程使用率达到了12.6%。
NOH的推进方面,目前已经在北京、保定、上海等城市开启泛化测试,即将量产上车,毫末智行预测,到2025年,城市NOH将有序落地100城,届时,毫末辅助驾驶乘用车总量也将来到百万量级别。有业内人士评述,即便按照当前的节奏不变,毫末智行智驾产品量产落地的速度也已与友商拉开了差距,至少领先行业一年以上。
毫末智行的”快”主要体现在两个方面,一个是产品的推新和迭代速度快,一个是由量产落地而带动的规模覆盖。
不得不说毫末智行选择了一条最为“稳妥”的自动驾驶路线。
在应对行业竞争,推动自动驾驶落地的过程中,我们很清晰的看到,HPilot、城市NOH等智驾产品正在源源不断的为毫末智行提供营收,而随着这些智驾产品的每一次迭代升级,自动驾驶能力一点点的向上提升,毫末智行距离全无人驾驶的星辰大海也更近了。
除了自动驾驶量产上车之外,毫末智行还公布6P开放合作的进展,目前已与3家主机厂签署定点合同,相关项目正在交付中。
在此之前,行业对毫末智行发展潜力存疑的主要观点是过于依赖长城,如今6P合作实现突破,表示毫末智行开始走出长城,迈向更广阔的发展空间,构建属于自己的“长城”。02 数据“第一性原理”,DriveGPT雪湖·海若的主要支撑点
将ChatGPT与DriveGPT雪湖·海若进行对比,虽然都是GPT,但运行条件和应用场景还是有很大的不同。
ChatGPT是对话式的生成式自然语言模型,输入是自然语言的文本串,输出就是自然语言的文本,目前ChatGPT主要完成通用的下游语言生成任务,比如多轮对话、代码生成、翻译、数学运算等。
DriveGPT雪湖·海若是用于自动驾驶场景的生成式大模型,输入是感知融合后的文本序列,输出是自动驾驶场景文本序列,即将自动驾驶场景Token化,形成“Drive Language”,最终完成自车的决策规控、障碍物预测以及决策逻辑链的输出等任务。DriveGPT雪湖·海若的实现过程是,首先在预训练阶段通过引入量产驾驶数据,训练初始模型,再通过引入驾驶接管Clips数据完成反馈模型(Reward Model)的训练,然后再通过强化学习的方式,使用反馈模型去不断优化迭代初始模型,形成对自动驾驶认知决策模型的持续优化。
毫末智行CEO顾维灏在自动驾驶技术领域的眼光独到,布局非常领先。
早在 2021 年,毫末智行就已经开始了 Transformer 大模型技术的探索,并快速落地应用到 BEV 视觉感知算法当中,然后又以五大模型的方式来实现自动驾驶感知、认知算法的快速升级,现在这些大模型将统一到 DriveGPT 生成式大模型当中,最终目标是实现端到端自动驾驶。很明显,和ChatGPT一样,DriveGPT雪湖·海若的技术原理并不复杂,但为何是毫末智行抢到了落地的头炮呢?
因为要想获得理想的训练结果,必须具备两个条件,海量的数据和超强的算力,而这恰恰是毫末智行区别于其他自动驾驶公司的优势长板。
先看数据。
去年9月的第6届HAOMO AI DAY上,CEO顾维灏向外界确认,毫末智行正式进入数据驱动的自动驾驶 3.0 时代。
如何理解?毫末智行依托HPilot的量产,目前已经积累了超过4000万公里辅助驾驶里程的数据,就场景来看,包括城市道路、城市快速路和高速;就数据分类来看,既有真实的感知数据,也包含真实的人驾数据。毫末智行的数据优势并不是数据量的多少,而是获取数据的能力。
以HPilot为代表的智驾产品一直在持续的大规模量产上车,这也是说,毫末智行拥有稳定且优质的数据源,这些数据被投喂到MANA数据智能体系的训练中,推动MANA的进化成长,从而完成数据在其设计的技术架构内的闭环。
截至到2023年4月,MANA学习时长超56万小时,虚拟驾龄相当于人类司机6.8万年。
再来看看算力。
毫末智行很早就预见了算力对于自动驾驶研发的重要性,与特斯拉建设超算中心Dojo类似,毫末智行今年1月发布了中国自动驾驶行业最大的智算中心MANA OASIS(雪湖·绿洲),算力达67亿亿次/秒。
通过一系列的训练框架、性能、通信等优化,MANA OASIS可单机实现训练100亿参数规模的大模型的能力,同时执行多任务、多模态并行的训练,大幅提升计算效率。
为了支持DriveGPT雪湖·海若的训练,毫末智行还对MANA OASIS在算力层面进行三大能力的升级。1、搭建了“全套大模型训练保障框架”,实现了异常任务分钟级捕获和恢复能力,可以保证千卡任务连续训练数个月没有任何非正常中断,有效保证了大模型训练稳定性;2、研发出以真实数据回传为核心的增量学习技术,并将其推广到大模型训练,构建了一个大模型持续学习系统,自主研发任务级弹性伸缩调度器,分钟级调度资源,集群计算资源利用率达到95%;3、MANA OASIS通过提升数据吞吐量来降本增效,满足Transformer大模型训练效率,通过引入火山引擎提供的Lego算子库实现算子融合,端到端吞吐提升84%。古希腊哲学家亚里士多德曾提出过“第一性原理”的哲学术语,翻译过来就是,“每个系统中存在一个最基本的命题,它不能被违背或删除。”
从毫末智行所表现出来的技术理念来看,无论是走“渐进式”路线,还是建设算力基础设施MANA OASIS,围绕的中心都是数据,在毫末智行的认知中,数据就是自动驾驶的“第一性原理”,基于此,毫末智行构建起行业竞争的护城河。03 从毫末到雪湖再到海诺,自动驾驶的中国式浪漫
在DriveGPT雪湖·海若发布之外,另外一个值得关注的点是,毫末智行还对外开放了该模型。
北京交通大学计算机与信息技术学院、高通、火山引擎、华为云、京东科技、四维图新、魏牌新能源、英特尔等单位成为首批合作伙伴。毫末智行在使用数据的过程中,还建立了一套极具性价比的,基于4D Clips数据的自动化标注方案。
一张正确标注结果的图片在行业中的市场价是5块钱,如果使用DriveGPT的标注服务,这个价格将只需5毛钱。
毫末智行计划,这项图像帧及4D Clips自动标注服务将逐步向行业开放使用。很明显,毫末智行发布DriveGPT雪湖·海若,并不是炒作跟风,而是真真切切的在做自动驾驶研发,更难能可贵的是,毫末智行很多前沿技术不光是为自己所用,还将其开放出来,以生态共建的形式,为行业的发展添砖加瓦。
其实,从毫末智行公司名字的由来,到自动驾驶智算体系MANA雪湖的命名,再到DriveGPT雪湖·海若的来源,能够窥视出毫末智行在自动驾驶这件事情上一以贯之的企业价值观。
“毫末”二字取自道家学派创始人老子之《老子·第六十四章》:“合抱之木,生于毫末。九层之台,起于累土。千里之行,始于足下。”强调的是一点一滴积累、脚踏实地耕耘的重要性。
“雪湖”这一名称,出自科幻小说《三体》第二部《黑暗森林》,说的是主人公罗辑在星空、雪山、森林、草地和湖畔之间徜徉思考,直到有一天在湖中寻找到了破解“三体危机”、拯救地球的方法。
将其延伸,“雪湖”这个名字代表了毫末对人类社会和科技趋势发展的热情,承载着毫末以AI通向自动驾驶梦想的思考。
“海若”则出自《庄子·秋水》,里面有两个神话人物河伯和北海若。河伯请教北海若,何谓大小之分,北海若教导,不因天地而觉大,不因毫末而觉小。其中蕴含着智慧包容、海纳百川的寓意。
将上述命名来源进行梳理,可以发现毫末智行的企业价值观融汇了中国古代经典的道家思想和科幻巨作天马行空式的哲学思辨,再结合当前正在从事的最前沿的自动驾驶事业,毫末智行呈现出特立独行的气质,更宏观的视角,还能看到一种与众不同的中国式浪漫。
【本文来自易车号作者洞见新研社,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
ChatGPT不会完全取代人工。
ChatGPT的“模式化”无法取代人类的“差异化”。 ChatGPT再“神通广大”,也只是人工智能实验室OpenAI开发的语言模型,其流畅对话的背后是大量文本数据,机器智能一旦被概念框架限定,就只能在既有框架内运行,有时难免陷入“模式化”“套路化”的窠臼。而我们人类,生而不同,正是这些“独一无二”的差异性才让人类文明得以延绵、生生不息。ChatGPT的“理性化”也无法取代人类的“感性化”。人工智能的“智能”更多是一种理性能力,而人类的智能还包括价值判断、意志情感、审美情趣等非理性内容。就像ChatGPT在回答中所说“我不具备自主意识,我的回答不包含意见或情感”。关于与人类之间的关系ChatGPT自己给出答案:
我不会替代人类,作为一个AI程序,我可以帮助人类解决困难和提高工作效率,但我永远无法用自己的感情去了解人类,也不能靠自己的判断去思考问题。只有真正的人才能拥有这样的能力。
在那条看不见前路的黑暗隧道中,也许ChatGPT也可以是给你提供光亮、指引方向的同伴,正视它、直面它、利用它,毕竟,人工智能的前缀依然是“人工”。
要利用ChatGPT学习语言并进行真实对话,可以按照以下步骤进行:
1. 准备ChatGPT:确保你已经安装了ChatGPT模型,并成功运行了相应的代码。可以通过OpenAI API访问ChatGPT或使用已经训练好的模型。
2. 设置对话场景:确定你想要模拟的对话场景。可以选择一些日常生活中的情景,例如餐厅预订、旅行规划、购物咨询等。对话场景的选择将有助于更好地学习语言。
3. 设定对话角色:为模拟对话选择至少两个角色。你可以扮演一个顾客,ChatGPT可以扮演一个餐厅服务员。为每个角色设定特定的目标、知识和角色类型。
4. 开始对话:与ChatGPT进行对话,并尽量使对话看起来像真实的对话。可以通过提供输入消息,例如“你好,我想预订一个桌子”,来开始对话。ChatGPT将生成回复。
5. 提供反馈:对ChatGPT的回复进行评估,并提供适当的反馈。如果ChatGPT的回答不准确,你可以纠正它并提供正确的答案。这有助于模型不断改进。
6. 迭代对话:通过不断的对话和反馈循环,逐渐改进ChatGPT的语言表达和对话能力。尝试在对话中使用不同的语法结构、词汇和句子类型,以扩展ChatGPT的语言知识。
7. 避免错误:当使用ChatGPT时,要小心避免模型生成不准确或误导性的信息。验证ChatGPT的回答,确保其准确性。如果发现错误,要及时提供正确的答案。
8. 扩展对话主题:随着对话的进行,逐渐扩展对话主题和场景。尝试讨论不同的话题,并鼓励ChatGPT提供详细和准确的回答。
9. 多样化对话:对于真实对话的学习,可以通过模拟与不同人物的对话来增加多样性。可以尝试不同角色、不同背景的对话,从而提高ChatGPT的对话能力。
10. 继续学习:ChatGPT是一个不断学习的模型。持续地进行对话和反馈,并与其他使用者分享经验,以进一步提高ChatGPT的语言理解和对话能力。
通过与ChatGPT进行对话,并进行持续的反馈和改进,可以利用该模型进行真实对话学习语言。这种方法可以帮助提高ChatGPT的语言表达和对话技巧,并开发出一个更强大的自然语言处理模型。
和 ChatGPT 在 AIGC(AI- Generated Content,人工智能生成内容)领域一样具备颠覆性的事情正在发生。4 月 11 日,自动驾驶技术公司毫末智行在其第八届 HAOMO AI DAY 上,重磅发布行业首个自动驾驶生成式大模型 DriveGPT,中文名「雪湖·海若」,该模型参数规模达到 1200 亿,可用于解决自动驾驶研发过程中困扰已久的认知决策问题,并通过能力迭代,最终实现端到端自动驾驶。
此前,受制于传统模型「数据量小、基于规则」等局限性,智能驾驶技术进展一度较为缓慢,甚至不少从业者都对未来产生了自我怀疑,在这样的背景下,两年前,毫末率先投入到大模型技术的研发之中,旨在寻找新的突破。
经历了先行探索和反复验证,毫末成功找到了突破口——生成式大模型,通过在行业首个将 GPT 落地到自动驾驶领域,大大加速了更高阶智能驾驶的落地应用。「生成式大模型将成为自动驾驶系统进化的关键,基于 Transformer 大模型训练的感知、认知算法会逐步在车端进行落地部署。」毫末董事长张凯在 HAOMO AI DAY 上对行业未来发展趋势作出论断。毫末 CEO 顾维灏也表示:「DriveGPT 雪湖·海若将会重塑汽车智能化技术路线,让辅助驾驶进化更快,让自动驾驶更早到来。」
顾维灏在自动驾驶技术领域的眼光独到,布局非常领先。
毫末在 2021 年就已经开始了 Transformer 大模型技术的探索,并快速落地应用到 BEV 视觉感知算法当中,然后又以五大模型的方式来实现自动驾驶感知、认知算法的快速升级,现在这些大模型将统一到 DriveGPT 生成式大模型当中,目标将实现端到端自动驾驶。
毫末的探索始终走在行业技术探索的前列。据了解,新摩卡 DHT-PHEV 即将首发搭载 DriveGPT 雪湖·海若量产上市,届时,用户市场还将迎来一轮新的震撼。
「毫末真正重塑了行业信心,」一位业内人士略微激动地说道,「这将是一场革命。」
01、DriveGPT 雪湖·海若,如何颠覆智能驾驶
在介绍 DriveGPT 雪湖·海若之前,先回顾一下 ChatGPT 的概念,其全称是 Chat Generative Pre-trained Transformer,字面意思是用于聊天的生成式预训练 Transformer 大模型。其中 Transformer 是 ChatGPT 的重点,最早由谷歌在 2017 年提出,该模型基于注意力机制的设计,可以实现出色的算法并行性,因而迅速在自然语言处理(NLP) 领域流行起来,ChatGPT 就是其最新成果。
Transformer 大模型对于智能驾驶来说也不陌生,在 NLP 中奠定了核心地位之后,被逐渐被引入计算机视觉(CV)领域,后又被特斯拉、毫末智行等行业龙头先行引入自动驾驶系统中,用于提升感知端的模型效果。
毫末在 Transformer 大模型的应用上更进一步,将其率先拓展到智能驾驶系统认知端,DriveGPT 雪湖·海若由此诞生。
从同样使用 Transformer 大模型的角度来说,ChatGPT 和 DriveGPT 雪湖·海若属于同宗同源。ChatGPT 是对话式的生成式自然语言模型,输入是自然语言的文本串,输出是自然语言的文本,可以完成通用的下游语言生成任务,比如多轮对话、代码生成、翻译、数学 运算等能力。
而毫末 DriveGPT 雪湖·海若是用于自动驾驶场景的生成式大模型,输入是感知融合后的文本序列,输出是自动驾驶场景文本序列,即将自动驾驶场景 Token 化,形成「Drive Language」,最终完成自车的决策规控、障碍物预测以及决策逻辑链的输出等任务。
DriveGPT 雪湖·海若首先在预训练阶段通过引入量产驾驶数据,训练初始模型,再通过引入驾驶接管 Clips 数据完成反馈模型 (Reward Model) 的训练,然后再通过强化学习的方式,使用反馈模型去不断优化迭代初始模型,形成对自动驾驶认知决策模型的持续优化。具体来说,DriveGPT 雪湖·海若会通过人类反馈强化学习的方式进行迭代,用 DriveGPT 雪湖·海若最新模型 (Active Model) 对真实场景 Case 做生成,产出多种场景序列结果,再用反馈模型给这些结果进行打分排序,目标是把好的结果排上来,差的结果排下去,然后与初始模型 (Pretrain-Model) 的生成概率做比较,放大比分。最后通过强化学习的方式将参数再次更新到最新模型 (Active Model) 中,一直反复这个迭代过程。Reward Model(反馈模型) 的训练过程是独立的,使用带有偏序关系的 Pair 样本对来训练,这些样本对来自于接管 Case,毫末将与人类驾驶结果相似的模型结果作为正样本,与被接管轨迹相似的作为负样本,这样来构建偏序对集合,再利用 LTR(Learning To Rank) 的思路去训练 Reward Model,进而得到一个打分模型。DriveGPT 雪湖·海若还可以输出决策逻辑链:即在输入端提供 Prompts(提示语),根据提示输出含有决策逻辑链 (Chain of Thought) 的未来序列。
毫末 CSS 自动驾驶场景库是 CoT 的重要输入,拥有超过几十万个细颗粒度场景,将 Prompt 提示语和完整决策过程的样本交给模型去学习,学到推理关系,从而将完整驾驶策略拆分为自动驾驶场景的动态识别过程,完成可理解、可解释的推理逻辑链生成。除了用作认知决策,DriveGPT 雪湖·海若还可以逐步应用到城市 NOH、捷径推荐、智能陪练以及脱困场景中。
有了 DriveGPT 雪湖·海若的加持,车辆行驶会更安全;动作更人性、更丝滑,并有合理的逻辑告诉驾驶者,车辆为何选择这样的决策动作。
对于普通用户来说,车辆越来越像老司机,用户对智能产品的信任感会更强,理解到车辆的行为都是可预期、可理解的。
尽管 DriveGPT 雪湖·海若刚出世就拥有强大的功能,但这还不是它的「终局」,毫末对于 DriveGPT 雪湖·海若的目标是实现端到端自动驾驶,后续毫末会持续将多个大模型的能力整合到 DriveGPT 雪湖·海若中。
与此毫末也对外构建 DriveGPT 雪湖·海若生态,通过对行业提供开放服务,促进自动驾驶的从业者和研究机构,快速构建基础能力,释放创新。汽车之心获知,毫末 DriveGPT 雪湖·海若首批定向邀请了北京交通大学计算机与信息技术学院、高通、火山引擎、华为云、京东科技、四维图新、魏牌新能源、英特尔等加入。
毫末对于大模型的开放从 DriveGPT 雪湖·海若的中文名「雪湖·海若」即可窥见。
据了解,「海若」一词出自《庄子·秋水》中的神话人物北海若,在该书中,另一神话人物河伯请教北海若,何谓大小之分,北海若教导河伯说,不因天地而觉大,不因毫末而觉小。
毫末据此把 DriveGPT 中文名命名为「海若」,寓意着智慧包容、海纳百川,为行业发展贡献力量。
02、自动驾驶生成式大模型「第一枪」,为何由毫末打响
自动驾驶领域顶级玩家众多,毫末凭何在全球首个推出了自动驾驶生成式大模型 DriveGPT 雪湖·海若?
要回答这个问题,首先要理清楚毫末 DriveGPT 雪湖·海若的本质,它是应用在智能驾驶上的人工智能,就必然离不开人工智能三要素:算法、数据和算力,而这三者恰恰是毫末具备领先性优势的地方。首先在算法的技术路线上,毫末早早就坚定选择走渐进式发展路线,比「跃进式」玩家的量产时间更早,更快形成规模化,从用户真实使用场景中积累足够多的数据。毫末还清晰地提出了从自动驾驶 1.0 时代到自动驾驶 3.0 时代的演进路径,并率先进入以数据驱动为核心的新时代。从这时开始,自动驾驶获取的数据量与数据多样性将呈现指数级膨胀,在深度学习主导中,与大模型相辅相成,真正去解决自动驾驶最后的长尾难题。
在 2021 年 12 月第四届 HAOMO AI DAY 上,毫末发布中国首个数据智能体系 MANA,其由四大板块组成,分别是 TARS、LUCAS、VENUS 和 BASE。
BASE 是整个系统架构的底层,包括数据底座、数据融合、PoseidonOS 等。
其他三大板块置于上层:TARS 代表毫末智行的开发的原型算法,包括感知、规划决策、地图定位、仿真引擎;LUCAS 是提取数据价值,以数据驱动系统能力持续迭代的核心子系统,解决场景泛化,评测和部署的问题;VENUS 则是数据看板,以参考标准评价算法的好坏。
【本文来自易车号作者汽车之心,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
作者 | 魏启扬
来源 | 洞见新研社毫末智行有着天生的紧迫感。
很多科技公司一年才举办一次的品牌日活动,毫末智行硬是办成了一个季度一次,活动频次的提高,则意味着组织内部新陈代谢的提速,从研发到落地乃至运营,都要跟上步点节奏。
毫末智行用这样一种方式来鞭策自己在自动驾驶道路上的进取之心。
4月11日结束的第八届HAOMO AI DAY,活动规格再上台阶,吸引了中国汽车芯片联盟联席理事长、中国电动汽车百人会副理事长董扬,同济大学教授、汽车安全技术研究所所长朱西产,清华大学车辆与运载学院教授曹东璞、华为云人工智能领域首席科学家、国际欧亚科学院院士、IEEE/CAAI Fellow田奇等业内大咖参会。
在影响力持续扩大的毫末智行再次更新了自己在技术、产品和生态上的进展,其中城市NOH即将量产上车与毫末DriveGPT 雪湖·海若的发布成最大亮点。
前者是中国首个重感知、不依赖高精地图的城市NOH,将最先落地北京、上海、保定等城市,后者则是全球首个自动驾驶生成式大模型。
NOH量产上车,毫末智行过去就曾做过预告,此次确定了更具体的落地时间,算是兑现了之前“夸下的海口”。
至于雪湖·海若 ,在GPT火热的当下,参与其中的自动驾驶公司也不少,为什么是毫末智行率先发布,成为很多人心中的谜团。01 自动驾驶大考年,毫末智行冲在最前线
毫末智行加快推进NOH的落地进程,很大一部分原因在于智驾产品已经进入到全线爆发的前夜。
来自工信部和高工智能汽车研究院的数据显示,2021年乘用车L2级智驾产品的搭载率是23.5%,全年共交付了476万辆。
到了2022年,乘用车上车的智驾产品升级到L2级以上,搭载率提升到29.4%,全年了交付了585.99万辆。
按照这一趋势预测,到2025年时,乘用车L2级以上智驾产品的搭载率将达到70%。
毫无疑问,正在经历的2023年和还没到来的2025年将十分关键,用毫末智行董事长张凯的话来说,“2023年既是自动驾驶的冲刺之年,也是大考之年”。
张凯判断,智驾产品今年的爆发将主要集中在两个方面。
第一个是城市导航辅助驾驶产品将围绕量产上车发力,主要玩家的城市辅助驾驶产品进入到真实用户覆盖和多城市落地的比拼。
另一个是行泊一体和无人车商业化将成为自动驾驶公司深耕的重点。在乘用车领域,搭载行泊一体功能的智驾产品将迎来前装量产潮。毫末智行作为“渐进派”的代表,坚定认为辅助驾驶是通往自动驾驶的必由之路,因而在过往,一直致力于推动智驾产品上车。
2021年推出HPilot 1.0版本,当年即完成坦克300城市版、魏牌拿铁、魏牌玛奇朵、哈弗神兽5款车型的量产上车,搭载乘用车数量超过数万台。
2022年,毫末智行对HPilot进行了两次大版本更新,HPilot月度搭载增速超过200%,与此毫末城市NOH辅助驾驶系统也完成了量产交付,搭载HPilot 3.0的新摩卡DHT-PHEV魏牌蓝山将在2023年先后上市。
根据毫末智行官方公布的数据,截至毫末HPilot整体已搭载近20款车型。用户辅助驾驶行驶里程突破4000万公里,HPilot 2.0 辅助驾驶日均里程使用率达到了12.6%。
NOH的推进方面,目前已经在北京、保定、上海等城市开启泛化测试,即将量产上车,毫末智行预测,到2025年,城市NOH将有序落地100城,届时,毫末辅助驾驶乘用车总量也将来到百万量级别。有业内人士评述,即便按照当前的节奏不变,毫末智行智驾产品量产落地的速度也已与友商拉开了差距,至少领先行业一年以上。
毫末智行的”快”主要体现在两个方面,一个是产品的推新和迭代速度快,一个是由量产落地而带动的规模覆盖。
不得不说毫末智行选择了一条最为“稳妥”的自动驾驶路线。
在应对行业竞争,推动自动驾驶落地的过程中,我们很清晰的看到,HPilot、城市NOH等智驾产品正在源源不断的为毫末智行提供营收,而随着这些智驾产品的每一次迭代升级,自动驾驶能力一点点的向上提升,毫末智行距离全无人驾驶的星辰大海也更近了。
除了自动驾驶量产上车之外,毫末智行还公布6P开放合作的进展,目前已与3家主机厂签署定点合同,相关项目正在交付中。
在此之前,行业对毫末智行发展潜力存疑的主要观点是过于依赖长城,如今6P合作实现突破,表示毫末智行开始走出长城,迈向更广阔的发展空间,构建属于自己的“长城”。02 数据“第一性原理”,DriveGPT雪湖·海若的主要支撑点
将ChatGPT与DriveGPT雪湖·海若进行对比,虽然都是GPT,但运行条件和应用场景还是有很大的不同。
ChatGPT是对话式的生成式自然语言模型,输入是自然语言的文本串,输出就是自然语言的文本,目前ChatGPT主要完成通用的下游语言生成任务,比如多轮对话、代码生成、翻译、数学运算等。
DriveGPT雪湖·海若是用于自动驾驶场景的生成式大模型,输入是感知融合后的文本序列,输出是自动驾驶场景文本序列,即将自动驾驶场景Token化,形成“Drive Language”,最终完成自车的决策规控、障碍物预测以及决策逻辑链的输出等任务。DriveGPT雪湖·海若的实现过程是,首先在预训练阶段通过引入量产驾驶数据,训练初始模型,再通过引入驾驶接管Clips数据完成反馈模型(Reward Model)的训练,然后再通过强化学习的方式,使用反馈模型去不断优化迭代初始模型,形成对自动驾驶认知决策模型的持续优化。
毫末智行CEO顾维灏在自动驾驶技术领域的眼光独到,布局非常领先。
早在 2021 年,毫末智行就已经开始了 Transformer 大模型技术的探索,并快速落地应用到 BEV 视觉感知算法当中,然后又以五大模型的方式来实现自动驾驶感知、认知算法的快速升级,现在这些大模型将统一到 DriveGPT 生成式大模型当中,最终目标是实现端到端自动驾驶。很明显,和ChatGPT一样,DriveGPT雪湖·海若的技术原理并不复杂,但为何是毫末智行抢到了落地的头炮呢?
因为要想获得理想的训练结果,必须具备两个条件,海量的数据和超强的算力,而这恰恰是毫末智行区别于其他自动驾驶公司的优势长板。
先看数据。
去年9月的第6届HAOMO AI DAY上,CEO顾维灏向外界确认,毫末智行正式进入数据驱动的自动驾驶 3.0 时代。
如何理解?毫末智行依托HPilot的量产,目前已经积累了超过4000万公里辅助驾驶里程的数据,就场景来看,包括城市道路、城市快速路和高速;就数据分类来看,既有真实的感知数据,也包含真实的人驾数据。毫末智行的数据优势并不是数据量的多少,而是获取数据的能力。
以HPilot为代表的智驾产品一直在持续的大规模量产上车,这也是说,毫末智行拥有稳定且优质的数据源,这些数据被投喂到MANA数据智能体系的训练中,推动MANA的进化成长,从而完成数据在其设计的技术架构内的闭环。
截至到2023年4月,MANA学习时长超56万小时,虚拟驾龄相当于人类司机6.8万年。
再来看看算力。
毫末智行很早就预见了算力对于自动驾驶研发的重要性,与特斯拉建设超算中心Dojo类似,毫末智行今年1月发布了中国自动驾驶行业最大的智算中心MANA OASIS(雪湖·绿洲),算力达67亿亿次/秒。
通过一系列的训练框架、性能、通信等优化,MANA OASIS可单机实现训练100亿参数规模的大模型的能力,同时执行多任务、多模态并行的训练,大幅提升计算效率。
为了支持DriveGPT雪湖·海若的训练,毫末智行还对MANA OASIS在算力层面进行三大能力的升级。1、搭建了“全套大模型训练保障框架”,实现了异常任务分钟级捕获和恢复能力,可以保证千卡任务连续训练数个月没有任何非正常中断,有效保证了大模型训练稳定性;2、研发出以真实数据回传为核心的增量学习技术,并将其推广到大模型训练,构建了一个大模型持续学习系统,自主研发任务级弹性伸缩调度器,分钟级调度资源,集群计算资源利用率达到95%;3、MANA OASIS通过提升数据吞吐量来降本增效,满足Transformer大模型训练效率,通过引入火山引擎提供的Lego算子库实现算子融合,端到端吞吐提升84%。古希腊哲学家亚里士多德曾提出过“第一性原理”的哲学术语,翻译过来就是,“每个系统中存在一个最基本的命题,它不能被违背或删除。”
从毫末智行所表现出来的技术理念来看,无论是走“渐进式”路线,还是建设算力基础设施MANA OASIS,围绕的中心都是数据,在毫末智行的认知中,数据就是自动驾驶的“第一性原理”,基于此,毫末智行构建起行业竞争的护城河。03 从毫末到雪湖再到海诺,自动驾驶的中国式浪漫
在DriveGPT雪湖·海若发布之外,另外一个值得关注的点是,毫末智行还对外开放了该模型。
北京交通大学计算机与信息技术学院、高通、火山引擎、华为云、京东科技、四维图新、魏牌新能源、英特尔等单位成为首批合作伙伴。毫末智行在使用数据的过程中,还建立了一套极具性价比的,基于4D Clips数据的自动化标注方案。
一张正确标注结果的图片在行业中的市场价是5块钱,如果使用DriveGPT的标注服务,这个价格将只需5毛钱。
毫末智行计划,这项图像帧及4D Clips自动标注服务将逐步向行业开放使用。很明显,毫末智行发布DriveGPT雪湖·海若,并不是炒作跟风,而是真真切切的在做自动驾驶研发,更难能可贵的是,毫末智行很多前沿技术不光是为自己所用,还将其开放出来,以生态共建的形式,为行业的发展添砖加瓦。
其实,从毫末智行公司名字的由来,到自动驾驶智算体系MANA雪湖的命名,再到DriveGPT雪湖·海若的来源,能够窥视出毫末智行在自动驾驶这件事情上一以贯之的企业价值观。
“毫末”二字取自道家学派创始人老子之《老子·第六十四章》:“合抱之木,生于毫末。九层之台,起于累土。千里之行,始于足下。”强调的是一点一滴积累、脚踏实地耕耘的重要性。
“雪湖”这一名称,出自科幻小说《三体》第二部《黑暗森林》,说的是主人公罗辑在星空、雪山、森林、草地和湖畔之间徜徉思考,直到有一天在湖中寻找到了破解“三体危机”、拯救地球的方法。
将其延伸,“雪湖”这个名字代表了毫末对人类社会和科技趋势发展的热情,承载着毫末以AI通向自动驾驶梦想的思考。
“海若”则出自《庄子·秋水》,里面有两个神话人物河伯和北海若。河伯请教北海若,何谓大小之分,北海若教导,不因天地而觉大,不因毫末而觉小。其中蕴含着智慧包容、海纳百川的寓意。
将上述命名来源进行梳理,可以发现毫末智行的企业价值观融汇了中国古代经典的道家思想和科幻巨作天马行空式的哲学思辨,再结合当前正在从事的最前沿的自动驾驶事业,毫末智行呈现出特立独行的气质,更宏观的视角,还能看到一种与众不同的中国式浪漫。
【本文来自易车号作者洞见新研社,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
ChatGPT是是由人工智能研究实验室OpenAI在2022年11月30日发布的全新聊天机器人模型,一款人工智能技术驱动的自然语言处理工具。
它能够通过学习和理解人类的语言来进行对话,不仅上知天文下知地理,知识渊博,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,但ChatGPT不单是聊天机器人的简单,甚至能完成撰写邮件、视频脚本、文案、翻译、代码等任务。同时也引起无数网友沉迷与ChatGPT聊天,成为大家讨论的火爆话题。
chatGPT念“柴特鸡皮题”,GPT全称Generative Pre- -trained Transformer,是一种预训练语言模型,这种模型读的越多,也就懂的越多。Chat是聊天的意思,顾名思义,ChatGPT的核心是GPT模型,只不过加上了一个能跟人聊天的对话框。
2023年2月7日,微软宣布推出由ChatGPT支持的最新版本人工智能搜索引擎Bing(必应)和Edge浏览器。微软CEO表示,“搜索引擎迎来了新时代”。
2023年2月8日凌晨,在华盛顿雷德蒙德举行的新闻发布会上,微软宣布将OpenAI传闻已久的GPT-4模型集成到Bing及Edge浏览器中。chatGPT的规范使用
2023年2月,媒体报道,欧盟负责内部市场的委员蒂埃里·布雷东日前就“聊天生成预训练转换器”发表评论说,这类人工智能技术可能为商业和民生带来巨大的机遇。
但同时也伴随着风险,因此欧盟正在考虑设立规章制度,以规范其使用,确保向用户提供高质量、有价值的信息和数据。